TDA Progress Report 42-66

September and October 1981

New S-Band Transmitter Automation Software

W. Stahnke

Radio Frequency and Microwave Subsystem Section

This article describes the status of the 20-kW S-band transmitter automation project. A
new software design using a simplified multitasking approach is described that will
improve subsystem performance, maintainability and extensibility.

I. Introduction

Previous efforts toward transmitter automation have cul-
minated in the development of a complete, functionally cor-
rect program for operating the 100-kW S-band transmitter,
This program was developed over an extended period of time
as an SRT effort, and it has provided a great deal of insight
into the approaches required to automate a transmitter, Struc-
turally, however, the current program could be strengthened.
For implementation into the DSN transmitters, it is proposed
that a revised program with multitasking be written that
should improve subsystem performance, maintainability and
extensibility.

Il. Rationale for the Design Approach

From the programmer’s point of view, the transmitter con-
troller is a general-purpose microcomputer operating a real-
time control system. Like many other such systems, it has the
following requirements:

(1) There must be a means of responding to events occur-
ring asynchronously in the physical environment.

(2) There must be a means of controlling several devices
concurrently.

What sets the transmitter controller apart from some other
systems, however, is that it requires very little computational

214

work to be done. Almost all computations fall into the cate-
gory of integer arithmetic,

In addition, the transmitter control function is simplified
by two special features:

(1) Hardware interlocks provide high-speed response to po-
tentially catastrophic events.

(2) Most of the controlled devices are low-speed electro-
mechanical components.

As a result, only moderate response time and moderate control
speed are required.

To fulfill the requirements outlined above, a multiprocess-
ing or multitasking approach is preferred. In this case, a single
CPU provides ample processing power, so there is little incen-
tive to introduce multiple processors. Because of the abun-
dance of processing power, it is not necessary to make optimal
use of the processor itself, so a conventional preemptive,
priority-based real-time multitasking executive is not required.
Instead, the objectives can be achieved with a simplified execu-
tive that distributes processor time uniformly among the vari-
ous tasks. This approach brings the advantages of multitasking
to the program without the usual complexities of a full multi-
tasking executive.

This simplified executive function can be depicted by the
top-level flow chart shown in Fig. 1. After power-on initializa-
tion, the first task is executed for a given period of time,
typically one millisecond. After that time has expired, execu-
tion of the first task is interrupted by a hardware timer, and
the machine state is stored in a corner of memory reserved for
that purpose. The second task is then executed for an identical
period, until it is interrupted. After the last task is interrupted,
the machine state is restored in preparation for resuming the
first task. This cycle is repeated indefinitely.

It is important to note that in the strictest sense Fig. 1 is
not a flow chart at all. Figure 1 implies that (for example)
task 2 is initiated when task 1 is finished and relinquishes
control of the processor. In fact, task I is interrupted by an
event external to it, and later resumes execution at the same
point at which execution was previously interrupted. The code
for task 1 (and, in fact, the code for all of the tasks) is written
as an endless loop, so that it is never done.

lll. Advantages of Simplified Multitasking

The simplified multitasking approach outlined above has
several advantages over the polling-loop approach to control
systems, including:

(1) Concurrent execution of several tasks.
(2) Faster response to external events.

(3) Programmatically invisible processor allocation.

The last point is so important that it deserves a detailed
discussion, because it is the principal reason for using
multitasking.

In control systems, there are often some functions to be
performed that require very little processor time, but require a
great deal of elapsed time to execute. One example is filling a
tank. The processor must open a valve and wait until the tank
is full before closing it. The elapsed time might be several
hours.

If one were to write a conventional sequential program to
perform this function, the processor would open the valve and
then enter a short testing loop to determine if the valve should
be closed (see Fig. 2). This simple program might occupy the
processor full time for hours, during which time no other
functions could be performed (including operator intervention
to abort the filling). This is clearly unacceptable.

The only alteration that can provide better performance
using a polling-loop approach is to rewrite the program in such
a way that it can be called repetitively by the (higher-level)

polling loop. This usually necessitates the use of state flags to
allow the processor to determine what it was doing on the
most recent pass. For our simple example, the program might
be rewritten as shown in Fig. 3. Here only one state flag is
required.

The modified routine provides improved performance at
the cost of simplicity and clarity. It is now the programmer’s
responsibility to break the task into subtasks, each of which
must execute quickly enough to prevent undue delay to the
polling loop. The program and its flowchart have become more
difficult to read.

At the most basic level, the difference between the sequen-
tial code and modified sequential code is quite simple: in the
former, the state of the system is implied by position in the
code; in the latter, it is explicitly given by state flags, which
must be defined and manipulated by the programmer. The
programmer must also be aware of the timing constraints that

each routine imposes on the polling loop.

A completely different solution is possible by introducing
multitasking. The program can now be written using purely
sequential coding techniques, and the multitasking executive
allocates processor time to each task automatically. Each task
is written as a free-standing sequential program, without regard
to polling time. A task is concerned only with itself; the other
tasks are invisible to it. This greatly simplifies program design,
coding and debugging.

It should be clear at this point that introducing multitask-
ing does not increase the complexity of a real-time program;
on the contrary, it enables the programmer for the first time
to write simple, purely sequential routines for each application
task.

The simplified multitasking approach presented above also
has some advantages over conventional preemptive priority-
based multitasking. Among these are:

(1) The executive is simplified.

(2) Fewer interrupts are required.

IV. Functions of the Executive

The executive performs two separate functions: initializa-
tion and multitasking. It also provides a global real-time clock
for use by all of the tasks. These functions are described in
greater detail in the following paragraphs.

Initialization by the executive encompasses both hardware

and software initialization. Hardware initialization is necessary
because on power-up the previous state of the hardware is lost,

215

and the hardware must be set to a known state before multi-
tasking can occur. Software initialization includes setting the
initialization semaphore and initializing the storage area for
each task.

The initialization semaphore is a single byte wHose value is
set after power-up to the number of tasks. Each task has
associated with it an initialization routine of its own that may
require an indefinite amount of time to execute. After finish-

ing its initialization, each task decrements the initialization .

semaphore and then enters a testing loop that waits until the
value of the semaphore is zero. In this way, all of the tasks
complete their initialization before any task begins to execute
working code. This is shown in the flowchart of Fig. 4 for a
single task.

The storage area associated with each task (Fig. 5) must be
partially initialized before task rotation can occur. A minimum
of two 16-bit register images must be filled: the program
counter image and the stack pointer image. Each program
counter image must be set to the address of the first instruc-
tion of its corresponding task initialization routine. Each stack
pointer image must be set to the ceiling value of the stack area
reserved for the executive. This is necessary because task
rotation requires the existence of a user stack.

216

The global real-time clock is maintained in memory, and
must be reset to zero after power-up. Subsequently, its value is
available to all of the tasks for timing physical events. The
clock is incremented every time control returns to the execu-
tive from a task. The initialization sequence is shown in Fig. 6.

Task rotation is initiated by a hardware timer interrupt.
There is a separate task rotating routine for each task. Task
rotation is straightforward. The register contents are stored in
the register images of the previous task storage area. After up-
dating the interrupt dispatch and global real-time clock, the
registers are restored from the next task storage area. Control
is then passed to the next task. This sequence is shown in
Fig. 7.

V. Present Status

Design and coding of the 20-kW S-band transmitter con-
troller program is proceeding using the multitasking approach
outlined above. The executive has been completed, and the
hardware drivers are currently being written. Later reports will
cover testing of the controller with the simulator for evalu-
ation and support of unattended operation demonstration.

INITIALIZE

TASK (n = 1)

!

TASK n

L

Fig. 1. Executive top-level flowchart

(sTART)
J

OPEN
VALVE

Y

NO

FULL ?

YES

CLOSE
VALVE

i
(o)

Fig. 2. Valve control flowchart (sequential code)

ENTER

OPEN CLOSE
VALVE VALVE
SET RESET
WOPEN" "OPEN"
FLAG FLAG

/

(EXIT)

Fig. 3. Valve control flowchart (modified sequential code)

START

INITIALIZE

!

DECREMENT
INITIALIZATION
SEMAPHORE

TASK
PROPER

Flg. 4. Task initlalization flowchart

217

H REGISTER L REGISTER

D REGISTER E REGISTER

B REGISTER C REGISTER
ACCUMULATOR FLAGS

STACK POIINTER

PROGRAM COUNTER

Fig. 5. Register image storage area for a single task

ARRIVE FROM
TASK i

UPDATE
START v REGISTER
IMAGES
mlrrslﬁﬂﬁ INCREMENT
SYSTEM REAL-TIME
cLOCK
¢ !
INITIALIZE
MULTITASKING T ERRUPT
TIMER DISPATCH
SET INITIALIZATION
FILL REGISTERS
SEMAPHORE FROM IMAGES

RESET GLOBAL

DEPART TO
oy TASK (i + 1)
l Flg. 7. Task rotation sequence (typlcal)
INITIALIZE
PROGRAM

COUNTER IMAGES

!

INITIALIZE
STACK POINTER
IMAGES

EXIT TO
TASK 0

Fig. 6. Executive initialization sequence

218

